先搜索下载安装OpenCV $
Cjk 然后参考C:\Program Files\OpenCV\modules\objdetect\src\fft.cpp =S]a&*M C/C++ code F X1ZG! ]&i+!$N_ h#Ce
_,o #include "precomp.hpp" w3D]~&] #include "_lsvm_fft.h" TQ1WVq
}* xQlT%X;' int getEntireRes(int number, int divisor, int *entire, int *res) {lz G*4? { PG)_L.7rJ *entire = number / divisor; <-jGqUN_I *res = number % divisor; XqR{.jF. return FFT_OK; 2Q$\KRE } 2neRJ ?Nl"sVCo int getMultipliers(int n, int *n1, int *n2) iTNqWU-o { i@<~"~>]7 int multiplier, i; (@ea|Fd#4 if (n == 1) Wm6dQQ;Bj { t,vTAq.)) *n1 = 1; 9Nl*
4 *n2 = 1; }?O[N}>,m return FFT_ERROR; // n = 1 Ww87 } u"F;OT\>g multiplier = n / 2; 6dT|;koWbm for (i = multiplier; i >= 2; i--) 8 G?b.NE^ { wd`R4CKhP] if (n % i == 0) jCWu\Oe { _XN~@5elrC *n1 = i; tq E>Zx=X *n2 = n / i; ]b\WaS8I return FFT_OK; // n = n1 * n2 f
sX;Nj] } U3q5^{0d/ } $PfV<Yj'B *n1 = 1; 2<.Vv\
= *n2 = n; !`h~`-]O return FFT_ERROR; // n - prime number cd"wNH- } 8c?8X=|D7 WA$ p_% r= /* 6(5c7R# // 1-dimensional FFT gx&7 3f<J // ^k9rDn/AW // API ?',}?{"c // int fft(float *x_in, float *x_out, int n, int shift); 7#/|VQX<A // INPUT @>9A$w$H|a // x_in - input signal I1J)#p%H. // n - number of elements for searching Fourier image x_pMG!2 // shift - shift between input elements o9^$hDs,si // OUTPUT zrTY1Asw;4 // x_out - output signal (contains 2n elements in order R=DPeUy; Re(x_in[0]), Im(x_in[0]), Re(x_in[1]), Im(x_in[1]) and etc.) =z']s4 // RESULT 7@\
GU].2 // Error status aliQ6_ */ Wpa$B
)xg int fft(float *x_in, float *x_out, int n, int shift) ,$SkaTBe { z4
nou> int n1, n2, res, k1, k2, m1, m2, index, idx; paUyS 1i float alpha, beta, gamma, angle, cosAngle, sinAngle; `,Q <YT ~ float tmpGamma, tmpAlpha, tmpBeta; GZ}*r{ float tmpRe, tmpIm, phaseRe, phaseIm; la1D2 lM res = getMultipliers(n, &n1, &n2); HK=CP0H if (res == FFT_OK) 939]8BERt { `mWQWx$V! fft(x_in, x_out, n1, shift); oa?!50d fft(x_in, x_out, n2, shift); ,5`."-0} } D;K& alpha = (float)(2.0 * PI / ((float)n)); ]Sk#a-^~ beta = (float)(2.0 * PI / ((float)n1)); P((S2"D<4 gamma = (float)(2.0 * PI / ((float)n2)); h,Y{t?Of for (k1 = 0; k1 < n1; k1++) ~k"eEV
p { *tIdp`xT/T tmpBeta = beta * k1; v[p/c.p?i for (k2 = 0; k2 < n2; k2++) " {,\]l&o { I 0x`H)DA idx = shift * (n2 * k1 + k2); vCYSm 0 x_out[idx] = 0.0; 5&GQ=m x_out[idx + 1] = 0.0; &/z+A{Hi tmpGamma = gamma * k2; /gMa" 5?, tmpAlpha = alpha * k2; *B)Jv9 for (m1 = 0; m1 < n1; m1++) |>jqH @\P { .x\/XlM tmpRe = 0.0; Q6e'0EIKC tmpIm = 0.0; ZEXj|wC for (m2 = 0; m2 < n2; m2++) Lqz}&A
{ ~jgN_jz angle = tmpGamma * m2; ly[\mGr index = shift * (n1 * m2 + m1); ~(*co[_ cosAngle = cosf(angle); UeK,q>i sinAngle = sinf(angle); 3thG*^C
5 tmpRe += x_in[index] * cosAngle + x_in[index + 1] * sinAngle; f
6dE\
tmpIm += x_in[index + 1] * cosAngle - x_in[index] * sinAngle; &)fhlp5 } OLd$oxKR angle = tmpAlpha * m1; o0-fUCmC cosAngle = cosf(angle); {YxSH% sinAngle = sinf(angle); v"Ud mv " phaseRe = cosAngle * tmpRe + sinAngle * tmpIm; r~Is,.zZ} phaseIm = cosAngle * tmpIm - sinAngle * tmpRe; tSh}0N) angle = tmpBeta * m1; ,*O{jc`( cosAngle = cosf(angle); X
&;] sinAngle = sinf(angle); GmEJ,%A x_out[idx] += (cosAngle * phaseRe + sinAngle * phaseIm); 2Xq!'NrS x_out[idx + 1] += (cosAngle * phaseIm - sinAngle * phaseRe); c+G :@% } T/spUlWu } fSQ3 :o } =+sIX3 return FFT_OK; ovBd%wJ 0 } xa%ktn *{p&Fy55 /* =QxE-)v // Inverse 1-dimensional FFT F
O3eg"{N // #t9=qR~" // API }FdcbNsP // int fftInverse(float *x_in, float *x_out, int n, int shift); LZAj4|~,m // INPUT gm%bxr@X~ // x_in - Fourier image of 1d input signal(contains 2n elements AB|VO4-? in order Re(x_in[0]), Im(x_in[0]), kBQenMm Re(x_in[1]), Im(x_in[1]) and etc.) *U^\Mwp // n - number of elements for searching counter FFT image g(}8n bTA // shift - shift between input elements ah$7
Oudj // OUTPUT v>cE59('0 // x_in - input signal (contains n elements) ] GPz>k // RESULT )LMux
j // Error status `h{mj|~ */ R{y{ int fftInverse(float *x_in, float *x_out, int n, int shift) 48NXj\L[y { )B5gs%u] int n1, n2, res, k1, k2, m1, m2, index, idx; -3%)nV float alpha, beta, gamma, angle, cosAngle, sinAngle; )tQ6rd' float tmpRe, tmpIm, phaseRe, phaseIm; FveK|- res = getMultipliers(n, &n1, &n2); ?RAR if (res == FFT_OK) `}Zbfe~ { kITmo"$K fftInverse(x_in, x_out, n1, shift); 34M.xB fftInverse(x_in, x_out, n2, shift); ph (k2cb } 6e-h;ylS alpha = (float)(2.0f * PI / ((float)n)); wgP3&4cSUc beta = (float)(2.0f * PI / ((float)n1)); t>u9NZt G gamma = (float)(2.0f * PI / ((float)n2)); ;mKU>F<V for (m1 = 0; m1 < n1; m1++) ?(UXK hs { &Zy=vk* for (m2 = 0; m2 < n2; m2++) (G!J== { TUYl><F5v= idx = (n1 * m2 + m1) * shift; 5!{
g6=( x_out[idx] = 0.0; zd]L9
_ x_out[idx + 1] = 0.0; "T[jQr for (k2 = 0; k2 < n2; k2++) {!bJ.O
l { *fX)=?h56 tmpRe = 0.0; ~?+m=\ tmpIm = 0.0; BV:,bS for (k1 = 0; k1 < n1; k1++) `g1~ya(MC { <4bo7XH angle = beta * k1 * m1; n\DT0E] index = shift *(n2 * k1 + k2); L, GtIZkE sinAngle = sinf(angle); N Uml" cosAngle = cosf(angle); )q-!5^ak tmpRe += x_in[index] * cosAngle - x_in[index + 1] * sinAngle; "7/YhLq7 tmpIm += x_in[index] * sinAngle + x_in[index + 1] * cosAngle; e@VRdhb } 7
[ji,.7 angle = alpha * m1 * k2; )$g/PQ sinAngle = sinf(angle); -*r';Mz; cosAngle = cosf(angle); *r3vTgo$ phaseRe = cosAngle * tmpRe - sinAngle * tmpIm; !!>G{ phaseIm = cosAngle * tmpIm + sinAngle * tmpRe; UGgi) angle = gamma * k2 * m2; DR=1';63 sinAngle = sinf(angle);
.[A S cosAngle = cosf(angle); z<*]h^!3 x_out[idx] += cosAngle * phaseRe - sinAngle * phaseIm; C(hg"_W ou x_out[idx + 1] += cosAngle * phaseIm + sinAngle * phaseRe; AG2jl/ } 1jVcL)szU x_out[idx] /= n; ,Fiiw x_out[idx + 1] /= n; fOAb?:D } !y.7"G* } 6 H.Da]hk return FFT_OK; `Fr$q1qae{ } _L>n!"E/ M`'2
a /* e+U o-CO // 2-dimensional FFT u)-l+U. // .+sIjd // API g;T`~
// int fft2d(float *x_in, float *x_out, int numRows, int numColls); ^gImb`<6- // INPUT X,~C // x_in - input signal (matrix, launched by rows) PoZBiw@ // numRows - number of rows X +R_TC // numColls - number of collumns b._pG(o1 // OUTPUT gC.T5,tn // x_out - output signal (contains (2 * numRows * numColls) elements I]58;|J in order Re(x_in[0][0]), Im(x_in[0][0]), .E(Ucnz/ Re(x_in[0][1]), Im(x_in[0][1]) and etc.) `
fXcW) // RESULT 90a=
39kI // Error status -VL3em|0 */ \oyr[so(i int fft2d(float *x_in, float *x_out, int numRows, int numColls) ^<c?I re { t V</x0# int i, size; 'tekne float *x_outTmp; hz!.|U@,{< size = numRows * numColls; HzV3O-Qz] x_outTmp = (float *)malloc(sizeof(float) * (2 * size)); :v#3;('7 for (i = 0; i < numRows; i++) 74_ji
! { h1xYQF_`Z fft(x_in + i * 2 * numColls, HjrCX>v x_outTmp + i * 2 * numColls, &}<IR\ci numColls, 2); se&:Y&vrc~ } }0:
=)e for (i = 0; i < numColls; i++) u?!p[y6 { O3S_P]{*ny fft(x_outTmp + 2 * i, Tw$la kw x_out + 2 * i, Y`%:hvy~ numRows, 2 * numColls); h<[ o;E } J^U#dYd free(x_outTmp); *+5AN306 return FFT_OK; S>nM&758 } )
b?HK SqI N]gdS]pP2{ /* +PjH2 // Inverse 2-dimensional FFT F9N)UW:w // k \|Hd"T // API U)2\=%8 // int fftInverse2d(float *x_in, float *x_out, int numRows, int numColls); VUk2pEGO. // INPUT +c?1\{M // x_in - Fourier image of matrix (contains (2 * numRows * numColls) *G^QS"% elements in order Re(x_in[0][0]), Im(x_in[0][0]), jT%k{"+>+? Re(x_in[0][1]), Im(x_in[0][1]) and etc.) :be
BiO // numRows - number of rows J"# o #~ // numColls - number of collumns UT%^!@u // OUTPUT m
z) O // x_out - initial signal (matrix, launched by rows) -:&qNY:Vp // RESULT
v[\'
M // Error status zQ&`|kS */ q,A; d^g int fftInverse2d(float *x_in, float *x_out, int numRows, int numColls)
NLf6} { r$<[`L+6 int i, size; ,SNN[a float *x_outTmp; 8K
=sx@l size = numRows * numColls;
%#7Yr(& x_outTmp = (float *)malloc(sizeof(float) * (2 * size)); gmd-$%" for (i = 0; i < numRows; i++) ~RgO9p(dY { WW\t<O;z fftInverse(x_in + i * 2 * numColls, 4Hc+F
( x_outTmp + i * 2 * numColls, Fg;V6s/>ts numColls, 2); C7:;<<"P } PZ06
_ for (i = 0; i < numColls; i++) N{w)}me[YY { 8&+m5xS fftInverse(x_outTmp + 2 * i, I@ "%iYL x_out + 2 * i, JO{Rth numRows, 2 * numColls); Gpv9~& |